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Low-temperature thermodynamic properties near the field-induced quantum critical point in
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We present a comprehensive experimental and theoretical investigation of the thermodynamic properties:
specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point
(QCP) around the lower critical field Hc1 ≈ 2 T in NiCl2-4SC(NH2)2. A T 3/2 behavior in the specific heat and
magnetization is observed at very low temperatures at H = Hc1, which is consistent with the universality class
of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient
at Hc1 shows minor deviations from the expected T 1/2 behavior. Our experimental study is complemented by
analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities.
We analyze the thermal and the magnetic Grüneisen parameters, which are ideal quantities to identify QCPs. Both
parameters diverge at Hc1 with the expected T −1 power law. By using the Ehrenfest relations at the second-order
phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field
scales.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) has triggered great
interest in the last years and was found in a variety of
complex many-body systems, such as cold atoms, superfluid
helium, or superconductors. By exploiting the Matusbara-
Matsuda mapping of S = 1/2 spins into hard-core bosons,1

Batyev showed that the field-induced phase transition between
canted XY antiferromagnetic (AFM) ordering and the fully
polarized state can also be described as a BEC.2 This useful
mapping between magnetic systems and dilute gases of bosons
can be extended to higher spin values,3,4 and it has been
successfully exploited first on TlCuCl3 (Ref. 5) and other
quantum magnets.6,7

One material investigated recently is NiCl2-4SC(NH2)2,8

also known as dichlorotetrakisthiourea-nickel (DTN). It has
a body-centered tetragonal crystal structure with chains of
Ni-Cl-Cl-Ni atoms arranged along the crystallographic c

direction. DTN enters the XY AFM ordered state between
moderate fields of 2 and 12.5 T, if the magnetic field H is
applied along c. The magnetic atom in DTN is Ni2+ carrying
a spin S = 1 due to an almost completely quenched orbital
momentum. The Hamiltonian for DTN can be written as

H =
∑

rν

JνSr · Sr+eν
+

∑
r

[
D

(
Sz

r

)2 − gμBHSz
r

]
, (1)

where ν = {a,b,c} and eν is the relative vector between nearest
neighbors along the ν direction. The magnitude of the dom-
inant single-ion anisotropy D is 8.9 K.9 The AFM exchange
interactions between neighboring spins are Jc = 2.2 K along
the chains, and about 10 times smaller, Jab = 0.18 K, in the
ab plane. The last Zeeman term in Eq. (1) is originated from
the applied magnetic field H and the quantization z axis is

chosen along the field direction. The gyromagnetic factor g

parallel to the c axis was estimated to be 2.26 by electron
spin resonance (ESR) experiments.9 Equation (1) is only a
minimal Hamiltonian for describing the magnetic properties
of DTN. Further contributions, such as dipolar interactions,
which break the U(1) symmetry of global rotations along the
spin z axis are small, but they become relevant at very low
temperatures. Therefore, the critical exponents characteristic
of a BEC quantum critical point (QCP) can only be observed
if the U(1) symmetry breaking terms are at least one order of
magnitude smaller than Jab. At low enough temperatures, one
should observe a crossover from the behavior characteristic
for BEC QCPs to the one expected for an Ising-type QCP.
Investigations of the exact shape of the phase boundary close
to Hc1 and Hc2 down to 1 mK by detailed ac susceptibility
measurements evidenced the universality class of a BEC in
DTN.10 Up to date, this is the solely experimental observation
consistent with a field-induced BEC QCP in this material.

The universality class of the QCP can also be determined
by measuring the exponents for the power-law dependen-
cies of different thermodynamic quantities as a function of
temperature. Table I shows the expected exponents for BEC
and Ising-type QCPs in two and three dimensions d.7 It is
important to note that d = 3 is the upper critical dimension
for the Ising-type QCP (D = d + z = 4), where z = 1 is
the dynamical exponent and D the effective dimensionality.
Therefore, one should expect further logarithmic corrections
to the power-law behaviors listed in Table I. In this work, an
extensive study of the magnetization M(H,T ), specific heat
C(H,T ), and thermal expansion αV (H,T ) close to the critical
field Hc1 gives further strong evidence that DTN belongs to
the universality class of BEC.
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TABLE I. Temperature dependencies of the thermodynamic
quantities: magnetization M(T ), thermal expansion �L

L
, α(T ), and

specific heat C(T ) at the field-induced QCP. The variable d denotes
the spatial dimensionality of the system. The exponents of the
Ising-type QCP are given for d = 3.

XY AFM order Ising

M(Hc,T ) T d/2 T 2

�L

L
(Hc,T ) T d/2 T 2

α(Hc,T ) T d/2−1 T

C(Hc,T ) T d/2 T 3

It has been shown recently11 that QCPs can be detected by
measuring the divergence of the thermal Grüneisen parameter

�th = αV

C
(2)

for pressure tuning, and the magnetic Grüneisen parameter

�mag = −∂M/∂T

C
(3)

for a magnetic field tuned QCP. Both Grüneisen parameters
diverge at the QCP like � ∝ T −1/νz, where ν is the critical
exponent that relates the correlation length with the driving
parameter of the quantum phase transition (magnetic field in
the case of DTN). The effective dimension D = d + z is higher
or equal to 4 with z = 1 for the Ising-type and z = 2 for the
BEC-type QCP, and we get ν = 1/2 for both cases. Therefore,
� ∝ T −1 is expected for a BEC QCP and � ∝ T −2 for an
Ising-type QCP in agreement with the power laws listed in
Table I.

Typical for QCPs is the occurrence of local maxima in the
entropy due to enhanced quantum critical fluctuations. This
implies a sign change of the thermal expansion coefficient,12

which is linked to the entropy via the Maxwell relation αV =
−∂S/∂p. In the past, the concept of the diverging Grüneisen
parameter was used successfully to identify and characterize
not only well-understood magnetic QCPs, but also other more
puzzling QCPs in intermetallic compounds.13

So far, dilatometric properties were used to investigate
the quantum critical behavior of only a few quantum
magnets. The d = 3 coupled spin-dimer system TlCuCl3
(Ref. 14) and the quasi-one-dimensional spin-ladder com-
pound (C5H12N)2CuBr4 (Ref. 15) are two rare examples.
These systems show field-induced phase transitions at low
temperatures,5,16,17 however, investigations of the thermal
expansion coefficient α and the Grüneisen ratio �th show
significant deviations from the expected behavior in both
cases. Dilatometric experiments on TlCuCl3 reveal that while
the thermal Grüneisen parameter diverges with the expected
power law 1/T , the individual quantities specific heat C

and thermal expansion α fail to follow the predictions.18 In
(C5H12N)2CuBr4, the thermal expansion coefficient αc along
the crystallographic c direction shows a weak indication of
1/

√
T divergency and a clear sign change at the lower and

upper critical field Hc1/c2, but a detailed discussion of �th is
missing.19 This study of the thermal and magnetic Grüneisen
ratios shows that DTN is an excellent candidate to close this

gap of knowledge about dilatometric properties of insulating
quantum critical materials.

The paper is organized as follows: In Sec. II, we describe
the experimental techniques that we used in static magnetic
fields to measure the specific heat, thermal expansion, and
magnetization up to 15 T, the approximated model used for the
analytical calculations, and the quantum Monte Carlo (QMC)
simulations of the thermodynamic quantities. Section III
contains a detailed description of the experimental and
theoretical results. We continue in Sec. IV with the comparison
between experiment and theory and the analysis of the
anomalies at the phase boundary via the Ehrenfest relations.
Section V summarizes the most important results of our study.

II. METHODS

The preparation of high-quality single crystals is explained
elsewhere.21 All experiments were conducted, partly down
to 30 mK, inside commercial available dilution refrigerators,
furbished with superconducting (SC) magnets with maximum
fields of up to 15 T. We measured the magnetization with a
high-resolution Faraday magnetometer.22 The thermal expan-
sion and magnetostriction experiments were carried out with
a high-precision capacitive dilatometer23 made of CuBe. The
dilatometer can be rotated by 90◦ in order to measure the length
change not only parallel but also perpendicular to the applied
magnetic field. The specific heat was measured with the com-
pensated heat-pulse technique24 and the data were confirmed
by experiments using the dual-slope method25 on the same
sample platform. The precise match between both sets of
experimental data is remarkable. Additionally, we used the
specific-heat setup to perform magnetocaloric effect (MCE)
measurements for a precise estimate of the critical field Hc1.

The analytical calculations of the various thermodynamic
properties were based on the usual expansion in the gas
parameter or ratio between the scattering amplitude and the
average interparticle distance ρ−1/3.26 For this purpose, we
mapped the Sz = 1 magnetic excitations of the low-field
paramagnetic (PM) state into hard-core bosons, where the z

component of the magnetization density in the original model
〈Sz

r 〉 is mapped into the particle density ρ. Here, we neglect
the contribution to the magnetization of the Sz = −1 modes
because we are assuming that H is close to Hc1 and T � �,
with � 	 3 K being the H = 0 spin gap of DTN. We use the
expression derived in Ref. 27 for the single-particle dispersion
ωk = ω0

k − gμBH with

ω0
k =

√
μ2 + 2μs2εk. (4)

The parameters s2 and μ are given by the following expres-
sions:

s2 = 2 − 1

N

∑
k

μ + s2εk

ω0
k

, D = μ + μ

N

∑
k

εk

ω0
k

. (5)

By using the Hamiltonian parameters for DTN estimated in
Ref. 9, the resulting values are s2 = 0.92 and μ = 10.3 K.
The effective repulsion between bosons in the long-wavelength
limit v0 = �0(Q,Q), with Q being the ordering wave vector,
results from summing the ladder diagrams for the bare
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interaction vertex Vq (Ref. 26):

�q(k,k′) = Vq −
∫ π

−π

dp3

8π3

�p(k,k′)
ωk+p + ωk′−p

, (6)

where Vq = U + 2Jc cos qz + 2Jab(cos qx + cos qy) for DTN
and U → ∞ is included to enforce the hard-core constraint.
The effective Hamiltonian in the long-wavelength limit |k −
Q| � 1 is given by

Heff =
∑

k

(εk − μ)a†
kak + v0

2N

∑
k,k′,q

a
†
k+qa

†
k′−qakak′ , (7)

where N is the total number of lattice sites and the operator
a
†
k (ak) creates (annihilates) a boson with momentum k. εk is

obtained by taking the long-wavelength limit of ωk:

εk = k2
z

2m∗
cc

+
(
k2
x + k2

y

)
2m∗

aa

(8)

with

1

m∗
νν

= ∂2ωk

∂k2
ν

∣∣∣∣
k=Q

. (9)

The chemical potential μ is gμBH − ωQ. After a mean-field
treatment of Heff in the PM phase H � Hc1, the interaction
term simply leads to a renormalization of the chemical
potential μ → μ̃, with

μ̃ = μ − 2v0ρ (10)

and the particle density

ρ = 1

N

∑
k

〈a†
kak〉. (11)

The resulting quadratic mean-field Hamiltonian can be easily
diagonalized, and the various thermodynamic properties are
computed by solving the self-consistent condition imposed by
Eqs. (10) and (11)

The analytic calculations have been supplemented by
large-scale numerical simulations of the microscopic model.
We have used the stochastic series expansion (SSE) QMC
method to simulate the Hamiltonian (1) on finite-sized lattices
using the experimentally determined parameters. The SSE
is a finite-temperature QMC technique based on importance
sampling of the diagonal matrix elements of the density matrix
e−βH .28,29 The use of operator loop cluster updates reduces the
autocorrelation time for the system sizes. We consider here up
to ≈ 2 × 104 spins to at most a few Monte Carlo sweeps even
at the critical temperature.30 This enables us to explore the
vicinity of the critical points very efficiently. On the dense
temperature grids needed to study the critical region in detail,
the statistics of the Monte Carlo results can be significantly
improved by the use of a parallel tempering scheme.31,32 The
implementation of this tempering scheme in the context of the
SSE method has been discussed in detail previously,33,34 and
we follow the one developed in Ref. 34.

QMC estimates for observables of a spatially anisotropic
system can depend nonmonotonically on the system size for
isotropic lattices. One can instead use anisotropic lattices to
more rapidly obtain monotonic behavior of the numerical

results for extrapolating to the thermodynamic limit. Antici-
pating similar effects in the present model (since Ja,Jb � Jc),
we have studied tetragonal lattices with Lx = Ly = Lz/4.

The specific heat has been extracted from the simulation
data by the numerical differentiation of the total internal energy
of the system, a quantity that is estimated extremely accurately
by the SSE method. The temperature dependence of the energy
is approximated by a polynomial in T , and the derivative of
the polynomial fit is used to estimate the specific heat. Thus,
artifacts of discrete numerical differentiation of the raw data
are avoided and we yield a relatively noise-free specific-heat
curve.

III. EXPERIMENTAL RESULTS

A. Magnetization

Figure 1 shows a comparison of the magnetization M as
a function of magnetic field measured perpendicular at T =
500 mK (Ref. 20) and parallel at T = 16 mK (Ref. 21) to
the crystallographic c axis. The latter data nicely reflect the
Néel-ordered state in the ab plane with increasing canting
along c between 2.1 and 12.6 T followed by saturation. For H ‖
ab, the magnetization shows PM behavior with no ordering,
approximately following a Brillouin function and saturating
at 2.2 μB per Ni2+ atom around 15 T. In this field direction,
the magnetic field increases the size of the spin gap instead of
closing it as happens for H ‖ c. The inset of Fig. 1 shows the
low-field part of the magnetization H ‖ c at 50 mK in greater
detail. We observe a linear increase between zero and the lower
critical field Hc1, which can not be explained with a U(1)-
invariant Hamiltonian such as H, where the magnetization is
supposed to be zero at T = 0 in the quantum PM region H �
Hc1. This effect can not be caused by single-ion impurities,
e.g., uncoupled Ni2+ moments, because such spins should be

μ

μ

FIG. 1. (Color online) Magnetization M as a function of the
magnetic field H of DTN at 16 mK for measurements H parallel (solid
line, Ref. 21) and perpendicular to the crystallographic c direction
at 500 mK (dashed line, Ref. 20). The inset shows new results of
the magnetization at 50 mK in low fields up to 2.5 T and a linear fit
(dashed line) to the data.
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Δ

μ

FIG. 2. (Color online) Corrected magnetization �M versus T 3/2

for magnetic fields H ‖ c between 1 and 3 T. The magnetization at
the critical field μ0Hc2 = 2.08 T is labeled with stars. Data above 1 T
are shifted vertically by 0.02 μB per Ni atom for better visualization.
Arrows indicate the phase transition into the XY AFM state.

fully polarized for magnetic fields well below the lower critical
field H � Hc1. Instead, we conclude that the linear slope
(dotted line) is caused by a misalignment of the sample, which
gives a contribution M(H ⊥ c) to the magnetization. From
the value of the susceptibility compared to data for H ⊥ c, we
estimate a misalignment of less than 1.2◦.

Furthermore, we measured the magnetization for H ‖ c

near Hc1 and in the temperature range 0.1 K � T � 0.5 K
(data not shown) to extrapolate the phase boundary for T →
0.10 We obtain a critical field Hc1 of 2.08 T. It is important to
note that this value depends on the specific conditions under
which the sample is mounted in the experimental setup. The
slightly higher value of Hc1 in the magnetization compared to
the specific heat and thermal expansion L ‖ c values (see data
below) supports the assumption of small sample misalignment
because angular-resolved measurements of the magnetostric-
tion have shown that Hc1 increases with increasing angle
between the field direction and the crystallographic c axis.20

The small PM contribution MPM to the magnetization
made it necessary to refine the M(T ) data as a function of
temperature for H ‖ c. Figure 2 shows the corrected values
�M(T ) = M − MPM plotted versus T 3/2 for a variety of
different magnetic fields 1 T < μ0H < 3 T. The magnetization
is exponentially suppressed at low temperatures inside the
quantum PM state (μ0H = 1 T) and develops a T 3/2 behavior
when approaching the critical field Hc1 = 2.08 T in agreement
with the expected behavior for a BEC QCP in three dimen-
sions. The entrance into the XY AFM state well above Hc1

is marked with a dip in the magnetization (arrows in Fig. 2).
Below the minimum inside the AFM phase, the magnetization
increases with a power law for decreasing temperature.

B. Specific heat

We estimate the critical field Hc1 by MCE measurements
(data not shown) following the analysis of the highest slope

FIG. 3. (Color online) Main panel: total specific heat C/T as a
function of temperature T at the critical field Hc1 = 2.06 T (filled
dots) and the resulting Cmag/T (open squares) after subtraction of
the nuclear Schottky (NS) contribution at low temperatures. Inset (a)
shows the data of the main panel as C/T versus T −3 to illustrate the
NS specific heat as indicated by a dashed line. The prefactor of the
NS specific heat CNS/T = aT −3 is plotted in inset (b) versus H 2. It
does not follow the expected H 2 field dependence.

(∂T /∂H ) of the temperature during field scans35 and find a
value Hc1 = 2.06 T in the specific-heat experimental setup.

The specific-heat curve of DTN contains three contribu-
tions: nuclear Schottky (NS), magnetic Schottky (MS), and
quantum-critical (QC) contributions. Each of these dominates
in different regions of the H -T phase diagram. The specific
heat caused by phonons can be neglected in the temperature
range below 5 K. The NS contribution is difficult to master
in this material because it originates from several nuclei (H,
N, Cl) generating a huge fraction of the specific heat at
temperatures below 0.1 K (see, e.g., in Fig. 3 the measurement
at 2.06 T). In addition, the effective magnetic field (sum of the
external field and the field generated by the ordered moments)
becomes rather high in the AFM ordered state above Hc1. This
increases the splitting of the nuclear energy levels further and
the Schottky anomaly becomes very big. The inset (a) of Fig. 3
demonstrates the way we subtracted the NS contribution from
the original specific heat at the critical field μ0H = 2.06 T. We
fit the data between 80 and 50 mK as C/T = aT −3, which
is a good approximation for the high-temperature behavior of
the Schottky anomaly.36 The prefactor a for the NS specific
heat is given as a function of magnetic field in the inset (b) of
Fig. 3. The prefactors for different nuclei should be additive,
a = ∑

ai , for the case that all the different nuclear energy
levels are in the high-temperature limit (kBT � �nuclear).
Because the Zeeman splitting is linear in magnetic field,
a(H ) should obey a H 2 dependence for H < Hc1. This is
not observed in DTN and presently not understood.

The insulating behavior of DTN is challenging for specific-
heat experiments because no free electrons contribute to
the thermal conductivity. Heat is carried only by magnetic
excitations and by phonons, whereas the phonon contribution
is negligibly small in the temperature range below 1 K.
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μ
μ

FIG. 4. (Color online) Magnetic specific heat Cmag/T as a
function of temperature T for magnetic fields between 0 and 2.2 T in
a double-log scale. The arrows indicate the AFM phase transition for
fields H > Hc1. The critical field obtained from MCE experiments is
2.06 T. The inset shows the energy gap between 0 and 1.7 T, estimated
from the exponential temperature increase of the magnetic specific
heat at low temperatures.

Therefore, the different thermodynamic subsystems (nuclear
spins, magnetic moments, lattice) are only poorly coupled
to each other at low temperatures. This causes an out-of-
equilibrium state of the sample at very low temperatures. Thus,
we only include data above 80 mK in our analysis.

Figure 4 shows the magnetic specific heat Cmag/T =
C/T − CNS/T in a double-logarithmic display after the
subtraction of the nuclear Schottky contribution CNS between
0 and 2.2 T. The broad maximum around 2.5 K in the
zero-field measurement is caused by the thermal population
of the Sz = ±1 excited states that are a rather broad band
due to dispersion caused by the exchange interactions.35 This
dispersion is also responsible for the only slightly shift of the
maximum to lower temperatures with higher magnetic fields.
For small fields, the specific-heat data can be fitted with an
exponential function exp(− �

kBT
) in the low-temperature limit,

allowing us to extract the spin gap �. The inset of Fig. 4
shows the gap values, estimated from the experimental data.
They decrease linearly from 3.22 K down to 1 K when H varies
between 0 and 1.7 T, whereas the zero-field value is in close
accordance with previous susceptibility results of 3.3 K.37

Below 1.7 T, the temperature range for exponential behavior
is too small for reliable data fitting. From the zero-field gap
� = 3.22 K, we can estimate the critical field

Hc1 = kB�

gμB

, (12)

where the gap closes (kB = 1.380 × 10−23 JK−1 and μB =
9.274 × 10−24 JT−1). The calculated value Hc1 = 2.12 T
matches the experimental values summarized in Table II within
5%. The arrows in Fig. 4 indicate the anomalies caused by the
phase transition into the XY AFM state in the 2.14- and 2.2-T
measurements.

TABLE II. Critical field Hc1 estimated by different experimental
methods and setups.

Thermodynamic quantity Hc1 (T)

Magnetization M(H,T ) 2.08
Magnetocaloric effect (MCE) 2.06
Magnetostriction �L ‖ c 2.02
Magnetostriction �L ⊥ c 2.08

C. Thermal expansion

The linear thermal expansion coefficient

αi = 1

L0

∂�Li

∂T
(13)

is defined as the temperature derivative of the length change
�Li along a certain crystallographic direction i. In tetragonal
systems, such as DTN, the volumetric expansion can be
calculated from the linear coefficients

αV = 2αa + αc (14)

along the crystallographic a and c directions.
The main panel of Fig. 5 shows αc for H ‖ c between 0 and

5.5 T. For measurements well above Hc1, the transition into
the ordered phase is indicated by a distinct anomaly, marked
with arrows. In the temperature range up to 5 K, no significant
contribution from the lattice is observed. In zero field, αc shows
a rather broad minimum that shifts to lower temperatures in
higher fields and can be attributed to the thermal population
of energetically higher spin states Sz = ± 1, similar to the
maximum in the specific heat. In zero field, these spin states
are equally occupied because they have the same energy.
The largest AFM exchange along the c axis leads to the

μ

FIG. 5. (Color online) Linear thermal expansion coefficient αc

measured along the crystallographic c axis (H ‖ c ‖ �Lc) as a
function of the temperature T between 0 and 5.5 T, including the
critical field Hc1 = 2.02 T. Arrows mark the phase transition into
the AFM ordered state. The inset displays in addition to αc the
coefficient αa (H ‖ c, �La) and the calculated volumetric coefficient
αV = 2αa + αc for 0 T.
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dominant magnetostrictive effect. Since the PM ground state is
a product of Sz = 0 state to a good approximation, the thermal
excitation of Sz = ±1 states increases the nearest-neighbor
XY AFM correlations along the c axis 〈Sr · Sr+ec

〉. This
increase leads to an attractive magnetostrictive force between
nearest-neighbor ions along the c axis that shrinks the lattice
as the temperature increases from zero. On the other hand, the
magnetrostrictive force disappears at high enough temperature
because 〈Sr · Sr+ec

〉 → 0 for T → ∞, implying that �Lc

must have a minimum at a finite temperature where αc changes
sign. This expected behavior is fully consistent with the
experimental results shown in Fig. 5. The critical field for the
thermal expansion measurements was estimated by detailed
magnetostriction measurements, whereas the magnetostriction
coefficient

λi = 1

μ0L0

∂�Li

∂H
(15)

is defined as the magnetic field derivative of the length change
along the i direction. The analysis of the data (not shown)
gives Hc1 = 2.02 T for �Lc and Hc1 = 2.08 T for �La .
The difference in the critical field values can be attributed
to the application of small pressure on the sample during the
experiment (see also Sec. IV D).

The inset of Fig. 5 compares αc, αa , and αV for the zero-field
measurement. Between 5 and 3 K, the thermal expansion
is dominated by the length change along the c direction,
αc > 0, αa = 0, because of the quasi-one-dimensional nature
of the magnetic interactions in this temperature range. In
the temperature range below 3 K, the thermal expansion
coefficient αc is negative and has the minimum that is
expected because the curve αc(T ) must change sign at a finite
temperature. In contrast, the thermal expansion coefficient in
the plane αa is positive for T < 3 K with a maximum at
the temperature T = Tm where the minimum occurs in αc.
Calculating αV via Eq. (14) reveals that the thermal expansion
coefficients αa and αc strongly compensate each other and that
the volume coefficient changes much less than the individual
αi values.

IV. DISCUSSION

A. Critical field Hc1

The values for the lower critical field Hc1, estimated
individually for the different experimental quantities, are
summarized in Table II. The values vary by ± 30 mT around
2.05 T. This difference can be attributed to the application
of small pressure on the sample during the experiment. The
spring-loaded capacitive dilatometer for thermal expansion
and magnetostriction measurements can intrinsically apply a
small amount of uniaxial pressure along the measured sample
length. The misalignment of the crystal orientation out of
H ‖ c indicated by the magnetization experiments is another
reason for variations in Hc1.

B. Comparison theory: Experiment

Figure 6 shows a comparison between the experimental
magnetization (symbols) at the critical field and analytical
calculations (solid line) and QMC simulations (dashed line).

Γ

Δ
μ

μ

FIG. 6. (Color online) Experimental magnetization �M(T ) ver-
sus temperature T (symbols) at the critical field μ0H = 2.08 T
applied along the crystallographic c direction of DTN. The dashed
line represents QMC results, whereas the solid line indicates the
analytic calculations. The symbols in the inset show the magnetic
Grüneisen parameter �mag estimated from the data of the main panel
and the specific-heat values shown in Fig. 4. Dashed and solid lines
represent QMC and analytical results, respectively.

We observe that the QMC and analytic results agree with the
experimental data within the error bars below 0.5 K. A T 3/2

behavior is expected below 0.3 K for the BEC universality
class, in contrast to T 2 dependence of an Ising-type QCP.
While the analytic calculation is only valid at low temperatures
(or low density of bosons), the QMC results remain valid at
any temperature. This is the reason why the QMC results are in
very good agreement with the experimental data up to 2.2 K.

μ

μ

μ

μ

μ

FIG. 7. (Color online) Magnetic specific heat as Cmag/T as a
function of temperature T at the critical field Hc1 = 2.06 T (stars), at
2.04 T (open circles), 2 T (filled triangles), and 1.9 T (open diamonds)
compared with QMC results at Hc1 (solid line) and with analytical
calculations (dashed, dotted lines) at Hc1 and for fields below the
critical field.
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Figure 7 shows the experimental data of the specific heat
Cmag/T (T ) (symbols) at and slightly below the critical field
Hc1, compared with data of analytic calculations (broken lines)
and QMC simulations (solid line) in a double-logarithmic
display. The experimental data exhibit a

√
T dependence in

the low-temperature limit at the critical field, in agreement
with mean-field calculations and QMC simulations, which
is characteristic for the three-dimensional BEC universality
class. We observe that the experimental data agree well
within error bars with the analytic results down to the lowest
temperatures, whereas there is a slight deviation of the QMC
results below 0.3 K. This discrepancy is most likely due to
a small error in the numerical determination of the critical
field Hc1. A linear temperature dependence of the specific
heat Cmag/T (T ) is expected for an Ising-type QCP, which
we can exclude from our measurements. The broad Schottky
maximum around 2.5 K in the experimental data originating
from the population of Sz = ± 1 excited spin states can only be
reproduced by the QMC simulations because they remain valid
up to arbitrarily high temperatures. Seen in the experimental
data as well as in the QMC results is the crossover from
three dimensional (C/T ∼ T 1/2) to one dimensional (C/T ∼
T −1/2) behavior of the specific heat at higher temperatures for
the measurement at Hc1. The change of slope is marked with
a broad hump around 0.5 K. Note that the one-dimensional
temperature dependence overlaps with the above-mentioned
Schottky contribution to the specific heat.

For H < Hc1 measurements, the analytical curves as well
as the experimental values lie below the specific-heat data at
the critical field. They grow smaller as the distance from Hc1

increases. This observation confirms the correct estimation
of the value Hc1 = 2.06 T for the critical field in the MCE
measurements. Furthermore, Fig. 7 shows nice agreement
between analytical predictions and experimental data at low
temperatures for all shown fields. Deviations seem to be larger
for H < Hc1, but this is an effect of the double-logarithmic
display.

In presence of Ising-type anisotropy, the gap should reopen
inside the AFM phase. We do not observe any exponential
temperature dependence in the measurements for fields above
Hc1 in Fig. 4, namely, 2.09, 2.14, and 2.2 T. This, however,
could also be due to (i) lack of data at temperatures below
80 mK and (ii) the onset of the phase transition seen as a broad
anomaly in the specific heat.

Before we discuss the scaling behavior of the thermal
expansion coefficient at the critical field, let us have a closer
look at the length change �Lc/L, which is shown in Fig. 8
along with results from QMC simulations. The inset (a) of
Fig. 8 shows the experimental length at the critical field
after the subtraction of the data in 0 T in order to separate
quantum critical from the noncritical magnetic contributions
of the sample. The same procedure was done for QMC data.
In QMC simulations, �Lc/L at Hc1 is obtained from the
estimation of the spin-spin correlator (SSC), 〈Sr · Sr+eν

〉,38

and optionally additional terms. The main panel of Fig. 8
shows the comparison between the experimental data and
QMC simulations. The qualitative features are well reproduced
by the expectation value of the SSC for temperatures above
0.3 K. The scaling factor between experiment and theory is
1.85 × 10−4. �Lc/L follows a T γ power law with γ between 2

Δ

Δ

Δ

FIG. 8. (Color online) The main panel shows the normalized
length change �L/L (symbols) as a function of the temperature
T of DTN for H ‖ c ‖ Lc at the critical field Hc1 = 2.02 T in a
semilogarithmic display. The experimental data are compared with
QMC calculations, where the spin-spin correlator (SSC) (dashed line)
and the SSC together with the (Sz)2 term (dotted line) are taken
into account. The inset (a) shows the experimental data at zero field
(solid), the critical field Hc1 = 2.02 T (dotted line), and the difference
�Lc/L(Hc1) − �Lc/L(0) (symbols). In inset (b), the absolute values
�L/L (symbols) are plotted as a function of T in comparison with
∼ T 1/2 (solid), ∼ T 3/2 (dashed), and ∼ T 2 (dotted line) temperature
dependence.

and 3/2 as illustrated in inset (b) of Fig. 8. This result is in close
accordance with the expected BEC behavior of ∼ T 3/2 The
discrepancy between experimental data and QMC simulations
below 0.3 K can be attributed to additional contributions to
�Lc/L besides the SSC. However, an additional consideration
of a 〈(Sz

i )2〉 term that is expected from symmetry arguments
does not improve the agreement significantly. Therefore, the
origin of this discrepancy remains unclear at the present level
of analysis.

Figure 9 summarizes the volumetric thermal expansion
coefficient divided by the temperature αV /T for fields at and
close to the QCP. Note that according to Eq. (14) different
critical values Hc1 were considered for αa and αc and taken
into account for the estimation of αV . We find that at Hc1 the
values αV /T have a weak but finite temperature dependence
(solid line) meaning that the thermal expansion coefficient αV

diverges as expected at the QCP. For magnetic fields H � Hc1,
the low-temperature values αV /T show similar behavior.

In general, pressure p and magnetic field H are equivalent
parameters of the free energy F (p,H ) in close vicinity to
the critical field |Hc1 − H | � Hc1. Therefore, thermodynamic
quantities derived from pressure and field dependencies can be
converted

∂

∂p
= �

∂

∂H
(16)

by multiplication with the prefactor � = ∂Hc1/∂p, which is
the hydrostatic pressure dependence of the critical field Hc1.

Equation (16) implies that the compressibility κ =
∂2F/∂p2 is proportional to the magnetic susceptibility that
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Γ

Δμ

FIG. 9. The volume thermal expansion coefficient divided by T

is presented for fields close to the critical fields as a function of
temperature T in a semilogarithmic plot for DTN with field direction
H ‖ c. The inset shows the absolute value of the thermal Grüneisen
parameter �th = αV /C at the critical field Hc1. The solid line in the
inset illustrates T −1 behavior.

is a step function of the magnetic field at Hc1 and is shown
in Fig. 10. Therefore, κ increases rapidly at Hc1 and leads
to a softening of the crystal lattice, recently demonstrated
experimentally on DTN by ultrasound experiments.39 Consid-
ering this, we speculate that the huge change in the lattice
properties is responsible for the deviation of αV from the
exact behavior of a BEC. Similar crystal softening as a
precursor for quantum criticality was, e.g., also observed at
the metamagnetic transition in CeRu2Si2.40

The thermal expansion coefficient αV for fields above Hc1

shows the clear onset of the phase transition with positive
values αV > 0 in Fig. 9.

Ω

Ω

μ

FIG. 10. Volume magnetostriction coefficient λV and susceptibil-
ity χ = μ−1

0 ∂M/∂H at 0.1 K of DTN. The susceptibility is scaled by
the hydrostatic pressure dependence of the critical field � estimated
from the Ehrenfest relations.

C. Grüneisen parameter

The magnetic Grüneisen parameter �mag is given in the
inset of Fig. 6 and compared with theoretical data of the QMC
simulation and the analytical calculations. In the temperature
range below 0.3 K, the experimental �mag shows the onset of
divergence, as expected for a QCP. As far as it is observable
in the low-temperature limit, �mag follows the theoretical
prediction ∼ T −1 because the magnetization and specific
heat obey the expected behavior individually. For the thermal
Grüneisen parameter �th, shown in the inset of Fig. 9, a T −1

behavior is found as well for temperatures below 0.6 K. These
observations are fully in agreement with the universality class
of a BEC QCP.

D. Ehrenfest relations

The anomalies at the phase boundaries observed in the
thermal expansion coefficient αi , the specific heat C, the
magnetostriction coefficient λi , and the magnetization M allow
us to obtain the pressure dependence of (i) the transition
temperature TN ,

∂TN

∂pi

= VmTN

�αi

�Cp

, (17)

and of (ii) the critical field Hc1,

∂Hc1

∂pi

= Vm

�λi

�χ
, (18)

by the Ehrenfest relations, which hold at phase transitions of
second order. Equations (17) and (18) are valid for uniaxial as
well as hydrostatic pressure, dependent if the linear or volume
coefficients λi or αi are used in the analysis.

We find ∂TN/∂pc = 18.5 K GPa−1 at H = 2.2 T for uniax-
ial pressure applied along the crystallographic c direction. This
value is rather high, even compared to TlCuCl3, which already
exhibits a huge value of several Kelvin per GPa dependent
on the considered field range.41 Direct measurements of the
thermal expansion �La are currently not available, however,
from measurements in small magnetic fields H < Hc1, we
expect a negative uniaxial pressure dependence ∂TN/∂pa ,
which should partially cancel the value (18.5 K GPa−1) along
c, leading to a smaller but positive hydrostatic value. Similar
behavior was observed in TlCuCl3.41

The pressure dependence of the critical field ∂Hc1/∂pi

could be obtained at 0.1 K for both directions c and a. Because
of a negative jump �λc in the magnetostriction coefficient at
Hc1 (data not shown), the value ∂Hc1/∂pc = −6.76 T GPa−1

is negative. In contrast, ∂Hc1/∂pa = 1.84 T GPa−1 is positive
and the resulting hydrostatic pressure dependence, which
is equivalent to the prefactor � in Eq. (16), adds to
−3.07 T GPa−1. The correct estimate of � can be proved
by a comparison of λV with the magnetic susceptibility χ

measured at 0.1 K. Both thermodynamic quantities are linked
via Eq. (16) and it follows

λV = ∂2F

∂p ∂H
= �

∂2F

∂H 2
= �χ. (19)

Figure 10 shows an excellent agreement between the mag-
netostriction coefficient λV and the scaled susceptibility �χ .
We conclude from the analysis of the Ehrenfest relations that
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the application of uniaxial pressure pc along the c direction
increases the ordering temperature TN and reduces the critical
field Hc1. The behavior is opposite for uniaxial pressure along
the a direction. The response of DTN to hydrostatic pressure
is dominated by the uniaxial pressure dependence along the
c axis because this is the direction of the dominant magnetic
exchange interaction.

V. SUMMARY

We present a comprehensive experimental and theoret-
ical study of the thermodynamic properties: specific heat,
magnetization, and thermal expansion in the vicinity of the
field-induced QCP around Hc1 ≈ 2 T in NiCl2-4SC(NH2)2.
This point marks the entrance into a three-dimensional XY

antiferromagnetically ordered state and can be described
within the formalism of a BEC of magnons. We find a
T 3/2 low-temperature behavior of the specific heat and the
magnetization at Hc1 that are in agreement with the universality
class of a BEC QCP. The thermal expansion coefficient shows
a temperature dependence T γ with 3/2 < γ < 2 for T → 0,
which is in close agreement with expectations for this kind of
QCP. QMC simulations nicely reproduce the features observed
in the magnetization, specific heat, and thermal expansion over
a broad temperature range. Only the low-temperature depen-
dence in the specific heat and thermal expansion deviates due to
intrinsic uncertainties in the simulation method. Furthermore,

we analyzed the thermal �th as well as the magnetic Grüneisen
parameter �mag, which are key quantities for the identification
of QCPs and diverge with specific power laws. Experimentally,
we found a T −1 divergence for �mag and �th as expected for a
BEC QCP. Moreover, we estimated the influence of pressure
on the transition temperature TN and the critical field,Hc1

and found opposite effects for uniaxial pressure along the
crystallographic a and c axes. Uniaxial pressure along the c

(a) direction increases (reduces) the ordering temperature TN ,
while it reduces (increases) the critical field Hc1. Due to the
quasi-one-dimensional character of the exchange interactions
in DTN, the application of hydrostatic pressure increases TN

and reduces Hc1. Our results encourage pressure experiments
that shift Hc1 to zero field. Since the field-induced QCP
is BEC-like, the pressure-induced QCP should belong to
the O(2) universality class in dimension D = 3 + z = 3 + 1
[z = 1 for the O(2) QCP].
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